Andrew Mathis assists the firm in biotechnology patent prosecution. He has extensive knowledge in the areas of CRISPR interference, continuous culture, Illumina DNA sequencing, systems biology, molecular biology, and proteomics mass spectrometry. He also has significant experience in machine learning, computational biology and bioinformatics.

Prior to joining Wolf Greenfield, Andrew was a graduate student in Kimberly A. Reynolds’ laboratory at the University of Texas Southwestern Medical Center. His research focused on developing an assay for high-throughput, gradated knockdown of gene expression using CRISPR interference and next-generation sequencing. In addition to his lab work, Andrew was a volunteer reviewer for the Journal of Emerging Investigators.


Schober, A. F.; Mathis, A. D.; Ingle, C.; Park, J. O.; Chen, L.; Rabinowitz, J. D.; Junier, I.;  Rivoire, O.; Reynolds, K. A., A two-enzyme adaptive unit within bacterial folate metabolism., Cell Reports 2019, 27 (11), 3359-3370. e7.

Mathis, A. D.*; Naylor, B. C.*; Carson, R. H.; Evans, E.; Harwell, J.; Knecht, J.; Hexem, E.;  Peelor, F. F.; Miller, B. F.; Hamilton, K. L., Transtrum M. K., Bikman, B. T., Price, J.C., Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Molecular & Cellular Proteomics 2017, 16 (2), 243-254. *These authors contributed equally

Plimpton, R. L.; Cuellar, J.; Lai, C. W. J.; Aoba, T.; Makaju, A.; Franklin, S.; Mathis, A. D.;  Prince, J. T.; Carrascosa, J. L.; Valpuesta, J. M.; Willardson, B. M., Structures of the G beta-CCT and PhLP1-G beta-CCT complexes reveal a mechanism for G-protein beta-subunit folding and G beta gamma dimer assembly. Proceedings of the National Academy of Sciences USA 2015, 112(8), 2413-2418.

DeMille, D.; Badal, B. D.; Evans, J. B.; Mathis, A. D.; Anderson, J. F.; Grose, J. H., PAS kinaseis activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1  through the phosphorylation and activation of Pbp1. Molecular Biology of the Cell 2015, 26 (3), 569-582.

Weerasekara, V. K.; Panek, D. J.; Broadbent, D. G.; Mortenson, J. B.; Mathis, A. D.; Logan, G. N.; Prince, J. T.; Thomson, D. M.; Thompson, J. W.; Andersen, J. L., Metabolic-stress-induced  rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Molecular and Cellular Biology 2014, 34 (24), 4379-4388.

Grose, J. H.; Belnap, D. M.; Jensen, J. D.; Mathis, A. D.; Prince, J. T.; Merrill, B. D.; Burnett, S. H.; Breakwell, D. P., The genomes, proteomes, and structures of three novel phages that infect  the Bacillus cereus group and carry putative virulence factors. Journal of Virology 2014, 88 (20), 11846-11860.

DeMille, D.; Bikman, B. T.; Mathis, A. D.; Prince, J. T.; Mackay, J. T.; Sowa, S. W.; Hall, T. D.; Grose, J. H., A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct  inhibition of respiration through the phosphorylation of Cbf1. Molecular Biology of the Cell 2014, 25 (14), 2199-2215.

Smith, R.; Mathis, A. D.; Ventura, D.; Prince, J. T., Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view. BMC Bioinformatics 2014,15 (7), 1.



Expand All

Andrew Mathis assists the firm in biotechnology patent prosecution. He has extensive knowledge in the areas of CRISPR interference, continuous culture, Illumina DNA sequencing, systems biology, molecular biology, and proteomics mass spectrometry. He also has significant experience in machine learning, computational biology and bioinformatics.

Prior to joining Wolf Greenfield, Andrew was a graduate student in Kimberly A. Reynolds’ laboratory at the University of Texas Southwestern Medical Center. His research focused on developing an assay for high-throughput, gradated knockdown of gene expression using CRISPR interference and next-generation sequencing. In addition to his lab work, Andrew was a volunteer reviewer for the Journal of Emerging Investigators.

Schober, A. F.; Mathis, A. D.; Ingle, C.; Park, J. O.; Chen, L.; Rabinowitz, J. D.; Junier, I.;  Rivoire, O.; Reynolds, K. A., A two-enzyme adaptive unit within bacterial folate metabolism., Cell Reports 2019, 27 (11), 3359-3370. e7.

Mathis, A. D.*; Naylor, B. C.*; Carson, R. H.; Evans, E.; Harwell, J.; Knecht, J.; Hexem, E.;  Peelor, F. F.; Miller, B. F.; Hamilton, K. L., Transtrum M. K., Bikman, B. T., Price, J.C., Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. Molecular & Cellular Proteomics 2017, 16 (2), 243-254. *These authors contributed equally

Plimpton, R. L.; Cuellar, J.; Lai, C. W. J.; Aoba, T.; Makaju, A.; Franklin, S.; Mathis, A. D.;  Prince, J. T.; Carrascosa, J. L.; Valpuesta, J. M.; Willardson, B. M., Structures of the G beta-CCT and PhLP1-G beta-CCT complexes reveal a mechanism for G-protein beta-subunit folding and G beta gamma dimer assembly. Proceedings of the National Academy of Sciences USA 2015, 112(8), 2413-2418.

DeMille, D.; Badal, B. D.; Evans, J. B.; Mathis, A. D.; Anderson, J. F.; Grose, J. H., PAS kinaseis activated by direct SNF1-dependent phosphorylation and mediates inhibition of TORC1  through the phosphorylation and activation of Pbp1. Molecular Biology of the Cell 2015, 26 (3), 569-582.

Weerasekara, V. K.; Panek, D. J.; Broadbent, D. G.; Mortenson, J. B.; Mathis, A. D.; Logan, G. N.; Prince, J. T.; Thomson, D. M.; Thompson, J. W.; Andersen, J. L., Metabolic-stress-induced  rearrangement of the 14-3-3ζ interactome promotes autophagy via a ULK1-and AMPK-regulated 14-3-3ζ interaction with phosphorylated Atg9. Molecular and Cellular Biology 2014, 34 (24), 4379-4388.

Grose, J. H.; Belnap, D. M.; Jensen, J. D.; Mathis, A. D.; Prince, J. T.; Merrill, B. D.; Burnett, S. H.; Breakwell, D. P., The genomes, proteomes, and structures of three novel phages that infect  the Bacillus cereus group and carry putative virulence factors. Journal of Virology 2014, 88 (20), 11846-11860.

DeMille, D.; Bikman, B. T.; Mathis, A. D.; Prince, J. T.; Mackay, J. T.; Sowa, S. W.; Hall, T. D.; Grose, J. H., A comprehensive protein–protein interactome for yeast PAS kinase 1 reveals direct  inhibition of respiration through the phosphorylation of Cbf1. Molecular Biology of the Cell 2014, 25 (14), 2199-2215.

Smith, R.; Mathis, A. D.; Ventura, D.; Prince, J. T., Proteomics, lipidomics, metabolomics: a mass spectrometry tutorial from a computer scientist's point of view. BMC Bioinformatics 2014,15 (7), 1.